Aminosilane micropatterns on hydroxyl-terminated substrates: fabrication and applications.

نویسندگان

  • Hai Li
  • Juan Zhang
  • Xiaozhu Zhou
  • Gang Lu
  • Zongyou Yin
  • Gongping Li
  • Tom Wu
  • Freddy Boey
  • Subbu S Venkatraman
  • Hua Zhang
چکیده

The technique to pattern aminosilanes on hydroxyl-terminated substrates will open up extensive applications in many fields. There are some existing methods to pattern aminosilanes, in particular, (3-aminopropyl)triethoxysilane (APTES) on SiO(2) and glass substrates through indirect routes. However, few reports focus on the direct patterning of APTES by microcontact printing (microCP), due to the volatility of "inks" which consist of APTES and organic solvents. This report shows that high-quality APTES patterns on hydroxyl-terminated substrates can be directly obtained by microCP using an APTES aqueous solution as "ink". Gold nanoparticles (Au NPs) have been used to verify the presence and quality of APTES patterns on which they are selectively adsorbed. Thus-obtained Au NP patterns can serve as templates for the growth of ZnO nanostructures. Lectins are also successfully immobilized on the APTES patterns, with glutaraldehyde as linker. We believe that our method will serve as a general approach and find a wide range of applications in the fabrication of patterns and devices.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Surface-localized release of nitric oxide via sol-gel chemistry.

The release of nitric oxide (NO) from polymers has proven to be highly effective at inhibiting platelet adhesion and thus enhancing the blood compatibility of medical implants. Micropatterning techniques were used to design surfaces that release NO while preserving the underlying substrate for other applications (e.g., sensors). Micropatterned NO-releasing substrates based on aminosilane-contai...

متن کامل

Fabrication of two-dimensional arrays of microlenses and their applications in photolithography

This paper describes several methods for the fabrication of microlenses, and demonstrates a lithographic technique that uses a microlens array to pattern the intensity of light incident on photoresist. Three different methods were used to fabricate microlenses: (i) self-assembly of transparent microspheres, (ii) melting and reflow of photoresist on glass substrates and (iii) self-assembly of li...

متن کامل

Centimeter-long and large-scale micropatterns of reduced graphene oxide films: fabrication and sensing applications.

Recently, the field-effect transistors (FETs) with graphene as the conducting channels have been used as a promising chemical and biological sensors. However, the lack of low cost and reliable and large-scale preparation of graphene films limits their applications. In this contribution, we report the fabrication of centimeter-long, ultrathin (1-3 nm), and electrically continuous micropatterns o...

متن کامل

Nanocontact Printing of Aminosilane for Bio-Device Fabrications

Nanocontact printing using hydrogen silsesquioxane (HSQ) soft stamps is studied for nanobio device fabrications in this work. The stamps with designed linewidth 80-200 nm were fabricated by low-dose e-beam lithography on HSQ films. The contact printing technique by using aminosilane as the ink on O2 plasma treated HSQ/Si substrates was developed. The plasma treatment, stamping force and stampin...

متن کامل

Fabrication of low-cost micropatterned polydimethyl-siloxane scaffolds to organise cells in a variety of two-dimensioanl biomimetic arrangements for lab-on-chip culture platforms

We present the rapid-prototyping of type I collagen micropatterns on poly-dimethylsiloxane substrates for the biomimetic confinement of cells using the combination of a surface oxidation treatment and 3-aminopropyl triethoxysilane silanisation followed by glutaraldehyde crosslinking. The aim of surface treatment is to stabilise microcontact printing transfer of this natural extracellular matrix...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Langmuir : the ACS journal of surfaces and colloids

دوره 26 8  شماره 

صفحات  -

تاریخ انتشار 2010